Manual de Instruções para Compressores Portáteis

CPB 15-20-25-30-40 CPVS 20-25-30-40

Importante

Este manual aplica-se exclusivamente a:

1. Compressores a partir do número de série: **BRP073237**.

O **CPB/CPVS** nunca deve funcionar além de sua capacidade e de nenhuma outra forma que não conforme as instruções contidas nesta instrução de operação e manutenção.

A Chicago Pneumatic não se responsabiliza se estas instruções não forem respeitadas.

Este equipamento foi testado em fábrica e satisfaz as condições normais de funcionamento: estas não devem ser excedidas sob a pena de submeter a máquina a esforços anormais.

ÍNDICE 5.1 1.1 1.2 Preservação do meio ambiente e prevenção de 5.2 5.4.1 Preparação para partida (veja Capítulo 3) · · · · 15 5.4.2 Controle dos sentidos de rotação 14 1.5 2. Instalação 5.4.4 Montagem e ajuste para o funcionamento em 2.1 5.4.5 Regulagem da pressão por variação 2.2 23 2.4 2.5 Tubulação de descarga do ar 2.6 6. 3. 6.1 3 1 6.2 6.3 3.3 6.4 3.4 Ajuste para operação em paralelo com 6.5 6.6 3.5 Teste de segurança de temperatura 6.7 6.8 Aperto da conexões elétricas Desarmando o compressor ao final de Módulo eletrônico ES 3000 · · · · · · · · · 10 7. 4.3.3 Visualização das horas de funcionamento 12 8. 4.3.4 Visualização das horas de operação de 8.1 8.2 Rearme dos contadores de intervalos de manutenção (Leds Amarelos exceto LED "A") . . . 12 Ativação/desativação do modo de 4.3.8 Visualização do valor dos parâmetros do módulo . . . 13 4.3.9 Visualização do valor de temperatura

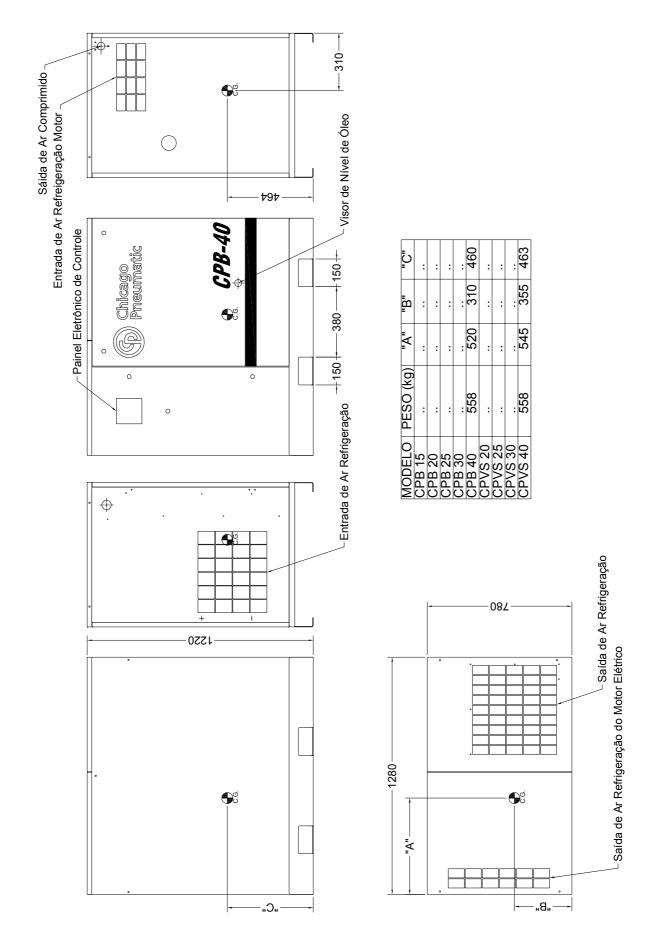


Fig. 1 - Dimensional CPB 15-20-25-30-40 e CPVS 20-25-30-40

1. Descrição

1.1 Generalidades

O compressor de ar **Chicago Pneumatic** tipo "**CPB**" contém uma unidade compressora de ar sob a forma de um conjunto independente, completo e inteiramente testado, acionado por um motor elétrico e inserido dentro de uma cabine acústica, necessária para a correta refrigeração do conjunto.

É um compressor de ar rotativo de parafuso, resfriado a óleo, estágio único. Um reservatório vertical serve para pré-separar e armazenar o ar e o óleo. A mistura do ar-óleo é separada pelo elemento separador.

A unidade compressora e motor estão fixados no chassi por amortecedores de vibração.

1.2 Preservação do meio ambiente e prevenção de contaminação

1.2.1 Manutenção da máquina

Certifique-se de que os componentes usados da máquina (óleo de dreno, os filtros do óleo e de ar, os separadores de óleo, etc....) são descartado de acordo com as normas nacionais e locais.

1.2.2 Tubo de dreno de condensados

Certifique-se de que os condensados (água, óleo) são drenados e tratados de acordo com as normas nacionais e locais.

1.2.3 Fim da vida da máquina

O equipamento deve ser operado em conformidade com as normas nacionais e locais. (Veja **Capítulo** 6-6.9)

1.3 Equipamento padrão

Na versão standard, a unidade carenada inclui:

Componentes de funcionamento:

- Um compressor de parafusos gêmeos lubrificado com óleo Rotair.
- 2. Um motor elétrico: 3600 rpm (60Hz), rotor de curtocircuito, voltagem 220, 380 ou 440V de acordo com o tipo.
- Partida estrela/triângulo (CPB) ou inversor de frequência (CPVS).
- 4. Um sistema de polias e correia "V".
- Um reservatório de ar/óleo de acordo com a legislação em vigor (Diretiva Européia relativa a equipamentos sob pressão n° 87/404).

- Uma regulagem de fluxo do tipo "partida-parada" que funciona mediante o controle de fechamento e da abertura da sucção.
- Um sistema de lubrificação que utiliza pressão diferencial do circuito, o que evita a necessidade de uma bomba de óleo
- 8. Um sistema de separação de óleo por meio de um elemento separador.
- 9. Um sistema de troca de calor: resfriador de óleo e resfriador de ar comprimido com ventilação forçada.
- 10. Um filtro de ar seco.
- 11. Um filtro de óleo.
- 12. Um módulo eletrônico de comando e controle.
- 13. ES 3000 como padrão em todas as unidades de velocidade fixa
- ES 3000 como padrão em todas as unidades com velocidade variável.

- Dispositivos de segurança:

- 1. Uma válvula de segurança montada no reservatório de óleo.
- Um dispositivo de proteção térmica para o motor, localizado na chave de partida, que protege o motor de uma forte sobrecarga.
- 3. Um termostato de ar que para o compressor quando há um aumento anormal da temperatura ou um defeito de refrigeração de óleo.
- 4. Um sensor de pressão que pare o compressor em caso de pressão excessiva.

- Dispositivos de controle:

- 1. Uma válvula de pressão mínima localizada na saída do reservatório de óleo após o separador de óleo, que garante uma pressão mínima no circuito de lubrificação.
- Despressurização do equipamento caso haja falha nos periféricos do compressor..
- 3. Um indicador do nível de óleo localizado no painel frontal (veja fig. 10).
- 4. Um painel elétrico composto:
 - um teclado de comando,
 - indicações principais de segurança e controle.
- 5. Um sensor de pressão que regula a saída do ar comprimido.

A unidade de ar comprimido **CPB**, foi projetada, produzida e testada de acordo com as seguintes recomendações, códigos e normas:

- segurança das máquinas: Diretiva Européia 98/37/CE, 91/368/CEE, 93/68/CCE.
- reservatório sob pressão: Diretiva Européia dos recipientes sob pressão simples nº 87/404/CEE.
- equipamento elétrico:
- · Diretiva Européia da baixa tensão 73/23 CEE.
- Diretiva Européia da compatibilidade eletromagnética 92/ 336/CEE, 92/31/CEE.
- níveis de desempenho: ISO 121 7 : 1996.
- nível ruído: ISSO 2151.
- Diretiva Européia 97/23/CE "Diretiva Equipamentos Baixa Pressão".

1.4 Definição dos pictogramas

Exemplos típicos de pictogramas válidos para os compressores **CPB**:

- 1. Saída de água
- 2. Dreno manual de condensados
- 3. Entrada de água
- 4. Dreno automático de condensados
- Desconectar e descarregar o compressor antes da manutenção

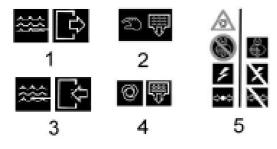


Fig. 2

1.5 Módulo eletrônico

A unidade está equipada com um módulo eletrônico ES 3000.

Veja as instruções específicas para uma descrição do controlador eletrônico junto com as instruções de funcionamento no Capítulo 4-4.3.

2. Instalação

2.1 Instruções de Instalação

Para que a garantia seja válida, a unidade deve ser montada em local coberto cujas temperaturas não excedam:

- Mínima: +4 °C (sem congelamento)
- Máxima: +40 °C*

Além disso, é necessário ter:

- 1 metro de espaço livre ao redor do compressor.
- Ventilação (ar fresco) proporcional ao fluxo da ventilação necessária para a máquina e protegida contra qualquer infiltração ou umidade (proteção de água durante intempéries).
- Isolamento ou um duto alto para expulsão do fluxo de ar quente para evacuar o calor para fora da sala do equipamento. Para locais enclausurados.
- Uma ligação do tubo de dreno de condensados a um dreno de descarga.
- Em caso de um ambiente poeirento, uma pré-filtragem na entrada de ar do local eventualmente um filtro especial na entrada de ar do compressor.

2.2 Movimentação

O **CPB** deve ser sempre manipulado com cuidado. Pode ser levantado por empilhadeira ou guindaste. Neste último caso, precauções devem ser tomadas para não danificar a carroceria da unidade.

2.3 Sala do compressor

O **CPB** é projetado para operar no interior de ambiente livre de congelamento, alimentado por ar a uma temperatura máxima de 40 °C. Este local deve ser limpo e bem ventilado, o mais próximo possível do local onde o ar comprimido é usado. Um espaço livre deve ser deixado ao redor da unidade para permitir sua limpeza e manutenção. É muito importante que o compressor tenha uma fonte abundante de ar fresco. (veja **2.1**).

Se o funcionamento do compressor fizer subir a temperatura ambiente acima de 40 °C é indispensável que o ar quente proveniente do resfriador seja descarregado para fora.

OBSERVAÇÃO

Quando a atmosfera está contaminada por poeira orgânica ou mineral ou por emanações químicas corrosivas, devem ser tomadas as seguintes precauções:

1. Fornecer outra entrada de ar, o mais próximo possível da fonte nível de sucção do compressor (esta recomendação

é aplicável se um único local disponível for excessivamente úmido).

2. Utilizar um filtro adicional para a alimentação da unidade com ar (veja Capítulo Opções).

2.3 Montagem

Colocar a unidade sobre uma superfície estável. O **CPB** não precisa fundações. Toda superfície plana que puder suportar seu peso será suficiente (piso industrial).

2.4 Tubulação de descarga do ar

O diâmetro da tubulação da rede de ar deve ser ao menos igual a 1"/DN30 da tubulação de gás. A legislação atual exige a instalação de uma válvula que possa ser travada na posição fechada na saída do compressor e conectada ao compressor por uma união ou mangueira flexível para isolá-la durante a conservação.

2.5 Conexão elétrica

Cada **CPB** fornecido está cabo grafado para 220V/60Hz, 380V/60Hz, 440V/60Hz.

NUNCA OPERE O CPB EM UMA TENSÃO QUE NÃO SEJA A INDICADA NO CUBÍCULO ELÉTRICO.

A alimentação da corrente elétrica ao **CPB** deve cumprir a seguinte tabela:

Tipo de cabo a ser utilizado: H07 RNF

Os cabos deverão ser flexíveis PVC com isolação para tensão até 750V e temperatura 70°C.

Dimensões dos cabos de potência: Consultar os diagramas elétricos (para um comprimento máximo de 10 metros)

REGRAS DE SEGURANÇA

Deve-se recordar que as normas de segurança exigem:

- A existência de uma tomada de terra
- A existência de uma chave seccionadora manual que corte as três fases e que deve ser próxima claramente visível da unidade CPB.
- · A corrente elétrica deve ser cortada sempre que o trabalho de manutenção é realizado na máquina.

Cabos , fus	iveis e ajustes recon	n endad os p/ comp	ressores CPB-15/40	(YD) p/ temp. amb. 40°C
COMPR.	ALIMENTAÇÃO	aj uste F21	fus. recom.	cabos recom. + terra
CPB-15	220V-60Hz	26,7A	3x63A	3x25 + 16mm2
CPB-15	380V-60Hz	15,4A	3x35A	3x10 + 10mm2
CPB-15	44 0V-60 Hz	13,3A	3x35A	3x6 + 6mm2
CPB-20	220V-60 Hz	36,7A	3x80A	3x25 + 16mm2
CPB-20	380V-60Hz	22,0A	3x50A	3x16 + 16mm2
CPB-20	44 0V-60 Hz	18,3A	3x50A	3x10 + 10mm2
CPB-25	220V-60Hz	45, 1A	3x100A	3x35 + 25mm2
CPB-25	380V-60Hz	26, 1A	3x63A	3x25 + 16mm2
CPB-25	44 0V-60 Hz	22,5A	3x63A	3x16 + 16mm2
CPB-30	220V-60Hz	53,4A	3x125A	3x50 + 25mm2
CPB-30	380V-60Hz	30,8A	3x80A	3x25 + 16mm2
CPB-30	44 0V-60 Hz	26,6A	3x63A	3x25 + 16mm2
CPB-40	220V-60 Hz	70,6A	3x160A	3x70 + 35mm2
CPB-40	380V-60Hz	40, 9A	3x100A	3x35 + 25mm2
CPB-40	44 0V-60 Hz	35, 3A	3x80A	3x25 + 16mm2

3. Partida inicial

3.1 Preparação para partida inicial

Antes de partir a unidade pela primeira vez, o operador deverá estar familiarizado com as peças diferentes da máquina. As principais peças a serem examinadas estão indicadas nas ilustrações.

Importante

Antes de partir o **CPB**, assegure-se de que os calços de transporte.

Atenção

Certifique-se de que a energia elétrica está desconectada antes de efetuar a manutenção ou o ajuste na unidade a fim de evitar qualquer partida imprevista.

Antes de partir, verificar os seguintes pontos:

- Certificar-se de que a unidade está ligada à terra corretamente.
- Verificar o nível de óleo no reservatório.
 NOTA: o reservatório foi abastecido de óleo apropriado na fábrica. Veja Capítulo 6 6.1 para o tipo do óleo a ser usado e para as condições de troca do óleo.
- Certificar-se de que a válvula de troca de óleo está bem fechada.
- 4. Verificar/apertar todas as conexões de alimentação.

ATENCÃO

O tampão de abastecimento de óleo, a válvula da mudança de óleo e os plugues devem sempre permanecer fechados durante o funcionamento e nunca serem abertos até que o sistema seja purgado completamente à pressão atmosférica.

3.2 Partida inicial

Verificar a tensão entre as três fases antes de usar a unidade pela primeira vez.

Verificar o sentido de rotação (indicado pela fecha situada no suporte da correia da polia (**ref. 1 – Fig. 3**)) pressionando o botão "Start" ("Partida") e executando imediatamente uma parada de emergência. Se a rotação não estiver no sentido correto, inverta os cabos de alimentação. Se a rotação estiver no sentido correto, o nível do óleo (**Fig. 10**) deve cair depois de 4 a 5 segundos de funcionamento.

- 1. Pressionar o botão LIGA, o motor parte.
- 2. Funcionar por alguns minutos com a válvula de des-

- carga ligeiramente aberta para observar o compressor em carga. Verificar se não há vazamentos. Rebloquear os conectores se necessário.
- Pressionar o botão DESLIGA. O motor para e a unidade é automaticamente purgada automaticamente na pressão atmosférica.

Fig. 3

3.3 Ajuste da pressão de saída

A unidade é ajustada na fábrica para uma pressão MÁXIMA (para a saída máxima da tomada da unidade central) de 8, 10 ou de 13 bar dependendo do modelo. Para diminuir a pressão de descarga, veja as instruções no manual do módulo eletrônico.

3.4 Ajuste para operação em paralelo com outros compressores

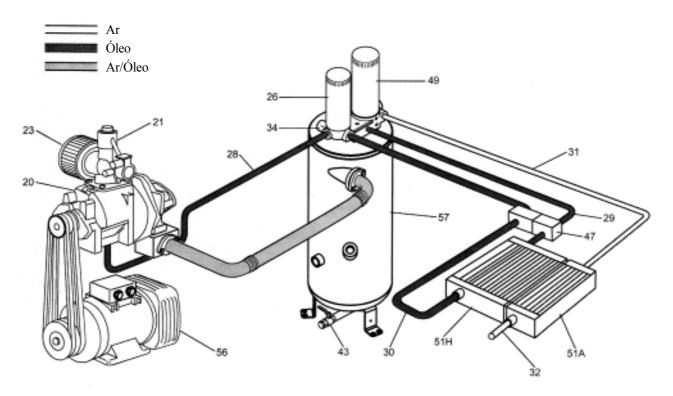
Se o **CPB** operar paralelamente a outro **CPB**, ou a compressores similares, as tubulações de descarga devem ser conectadas junto.

Se o **CPB** operar paralelamente com um ou vários compressores alternativos, é indispensável um tanque de ar comum aos compressores alternos. Os impulsos emitidos pelos compressores alternos danificariam seriamente a válvula de retenção, o elemento separador de óleo do **CPB** e perturbariam o sistema de regulagem. Quando o compressor rotativo funciona em paralelo com um compressor alternativo, os ajustes nos últimos deverão ser definidos de modo que o compressor rotativo tome a carga de base. Isto conduzirá a um funcionamento mais econômico.

3.5 Segurança

O óleo utilizado para a refrigeração do equipamento é um líquido inflamável se exposto a altas temperaturas. Em caso de incêndio do equipamento, é indispensável respeitar as medidas reguladoras para o compressor. O tipo de fogo em um o compressor é definido como "classe B" e na presença de um condutor elétrico com tensão, recomenda-se utilizar um extintor de ${\rm CO_2}$ dotado de funcionamento por "sufocação" (subtração do oxigênio) e observar as instruções de uso, aplicáveis ao modelo.

4. Funcionamento


4.1 Circuitos de ar e óleo

4.1.1 Circuito de ar (veja Fig. 4)

O ar é sugado para o compressor através de um filtro (**ref. 23**). Este ar passa através do elemento compressor onde é misturado com o óleo injetado durante a compressão. Dentro do reservatório de óleo, o ar comprimido é separado previamente por choques, flui através do separador de óleo (**ref. 49**). Imediatamente após passa através da válvula de pressão mínima (**ref. 34**), que inclui uma válvula de retenção, o resfriador final (**ref. 51A**), o separador de condensados e finalmente a válvula de saída (não fornecida) a que as tubulações de distribuição são conectadas.

4.1.2 Circuito de óleo (veja Fig. 4)

O óleo, abaixo da pressão de descarga, passa da parte inferior do tanque pelo resfriador (**ref. 51H**), o filtro de óleo (**ref. 26**) que retém as impurezas sólidas, e então no compressor (**ref. 20**). Em cada partida a frio, a válvula termostática (**ref. 47**) curto-circuita o resfriador de óleo, permitindo alcançar a melhor temperatura de funcionamento. Ao sair do elemento compressor, o óleo retorna ao reservatório. As sobras de óleo entram em suspensão no ar em estado de névoa. Esta névoa passa através do separador de óleo (**ref. 49**). Uma fração deste óleo aglomera nas grandes gotas que retornam ao reservatório pela força da gravidade. O óleo restante que é separado pelo último estágio do separador de óleo é aspirado por um tubo (retorno de óleo) para ser reenviado ao compressor.

Legenda Fig.4

20.	Compressor	43.	Válvula de alívio
21.	Válvula de admissão	47.	Válvula termostática (integrada ao suporte dos
23.	Filtro de ar		filtros)
26.	Filtro de óleo	49.	Separador de óleo
28/29/30.	Mangueira de óleo	51A	Resfriador de ar
31/32.	Mangueira de ar	51H.	Resfriador de óleo
34.	Válvula de pressão mínima integrada / Suporte dos	56.	Motor
	filtros	57.	Reservatório de óleo

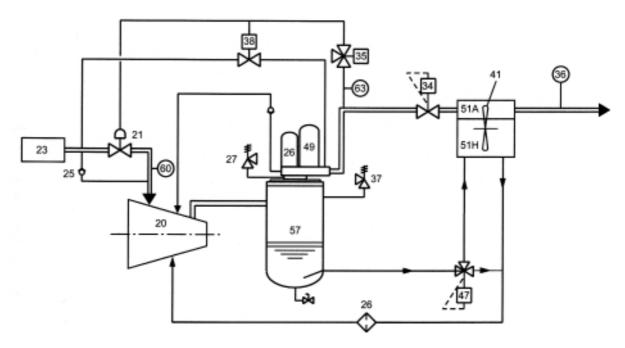
Fig. 4 – Circuito de ar / óleo

4.2 Sistema de controle

4.2.1 Controle Liga/Desliga (veja fig. 5)

Todos os modelos e versões

As unidades **CPB** 15-20-25-30-40 estão equipadas com um sistema de regulagem automática de parada com um tempo de funcionamento em alívio ajustável. Este período de funcionamento em alívio é necessário para evitar partidas excessivamente próximas nos períodos de consumo instável de ar comprimido.


Quando o compressor alcança a pressão máxima (medida pelo sensor de pressão – **ref. 36**), a válvula solenóide (**ref. 35**) descarrega na atmosfera o ar comprimido. A pressão interna fecha por um lado a válvula de admissão e por outro lado o pistão de descarga. Isto provoca a descarga da pressão interna do reservatório pela válvula de retenção.

O compressor aspira o ar através de uma válvula by-pass (ref. 25).

A baixa pressão obtida no reservatório de óleo permite a lubrificação e o resfriamento do compressor durante todo o tempo de funcionamento em alívio.

Se a pressão do ar comprimido da rede alcançar o valor mínimo de reativação antes do fim da temporização de funcionamento em alívio, se ordena o fechamento da válvula solenóide (**ref. 35**) provocando a abertura da válvula de admissão e o fechamento do funcionamento em alívio. O compressor volta a operar em fluxo total.

Quando o compressor para, a válvula solenóide (**ref. 35**), não é alimentada e se fecha, a válvula de admissão se fecha e o reservatório de óleo alivia. O reservatório retorna a pressão atmosférica para a próxima partida.

Legenda Fig. 5

- 20 Compressor
- 21 Válvula de admissão
- 23 Filtro de ar
- 25 Válvula de retenção by-pass
- 26 Cartucho filtro de óleo
- 27 Válvula de segurança
- 34 Válvula de pressão mínima integrada / Suporte dos filtros
- 35 Válvula solenóide
- 36 Pistão pneumático de vácuo

- 38 Sensor de pressão
- 41 Ventilação
- 47 Válvula termostática (integrada ao suporte dos filtros)
- 49 Separados de óleo
- 51A Resfriador de ar
- 51H Resfriador de óleo
- 57 Reservatório de óleo
- 60 Sensor de temperatura
- 63 Manômetro

Fig. 5 – Controle Liga/Desliga

4.3 Módulo eletrônico ES 3000

4.3.1 Painel de controle e comando

ANTES DE EXECUTAR O TESTE DE FUNCIONAMENTO, LEIA CUIDADOSAMENTE E OBTENHA UM BOM CONHECIMENTO DAS FUNÇÕES DE CONTROLE.

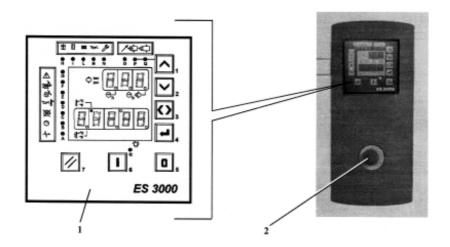


Fig. 6

- 1) Módulo de controle
- 2) Botão de parada de emergência com retenção mecânica e desbloqueio por rotação

4.3.2 Módulo eletrônico modelo "ES3000"

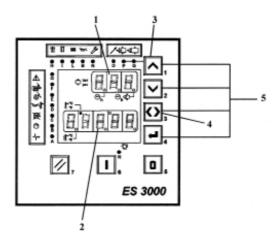


Fig. 7

O módulo eletrônico contém uma placa de controle e diagnóstico. Esta placa inclui a visualização das funções conforme as indicações da **figura 7**.

- 1) Display superior: indica a pressão do compressor.
- 2) Display inferior: indica a temperatura, o total de horas, as horas em carga.
- 3) Botão para criar um vácuo no compressor.
- 4) Chave de tabulação para passar ao próximo campo da tela no display **Ref. 2**.
- 5) Botões para programação.

Símb olo	Descrição
(7)	Apertando este botão é cancelada a indicação de alarme armazenada. Apertando o botão por mais de 3 segundos, é testada a unidade de controle: todos os LEDs devem acender.
[] (6)	Apertando este botão o compressor é ligado. NOTA: há um retardo de aproximadamente 15 segundos antes da partida.
0	Apertando o botão é iniciada a fase de desligamento do compressor: O compressor funciona sem carga durante alguns segundos antes de parar.

Led – indica a condição de operação do compressor: lâmpadas piloto "VERMELHAS" (causam a parada da máquina)

Símbolo	Led piscando	Led aceso
(B)	Alarme de sobrepressão em andamento	Máquina parada por sobrepressão
⊘ (c)		
(D)	Alarme de sobre temperatura de óleo em andamento (>100 °C)	Máquina parada por alta temperatura de óleo (> 105 °C)
& ₹ (E)	Não ativado	Não ativado
(F)	Alarme de relé térmico do motor em andamento.	Máquina parada pelo relé térmico do motor.
(G)	Alarme geral em andamento por falha nos sensores de pressão e temperatura.	-

NOTA: Para desligar os LEDs vermelhos apertar "reset"

Led – indica a condição de operação do compressor: lâmpadas piloto "amarelos" (não causam a parada da máquina)

Símbol	lo	Led piscando	Led aceso
-√→	(A)	Não ativado	Não ativado
Ü	(H)	Advertência prévia para trocar filtro de óleo	Trocar filtro de óleo
	(I)	Advertência prévia para trocar filtro separador	Trocar o filtro separador
0000000	(L)	Advertência prévia para trocar filtro de ar	Trocar filtro de aspiração
	(M)	Advertência prévia para trocar óleo	Trocar óleo
1	(N)	Advertência prévia para revisão geral	Executar revisão geral

NOTA: para desligar os LEDs "amarelos" veja capítulo 4.3 – 4.3.5.

Led – indica a condição de operação do compressor: lâmpadas piloto "VERDES"

Símbolo	Led piscando	Led aceso
≯ (0)	Não ativado	Não ativado
(P)	-	Compressor funcionado sob carga
- ₹ (Q)	Operação manual em alívio	Operação em alívio
ව (R)	Compressor em stand-by para partida (15 segundos) ou na fase de desligamento (30 segundos).	Compressor ligado

ATENÇÃO: para dar partida novamente após o disparo de uma proteção (alarme) apertar "RESET" seguido do botão de partida "I"

ATENÇÃO: a partida acontece aproximadamente 15 segundos após o quadro ter sido energizado ou a partir do momento que for desligado o botão (5).

Operação da unidade de controle central

A operação de controle central é programada para Economizar Energia; a mesma desliga o compressor, desta forma reduzindo ao mínimo o funcionamento desnecessário.

O módulo está programado para funcionar em alívio antes do desligamento por um período que é mais curto que o menor consumo de ar.

O módulo também indica quando os filtros precisam de manutenção, etc. (LEDs amarelos).

4.3.3 Visualização das horas de funcionamento

Para visualizar o total de horas de operação, apertar **Ref. 3, Fig. 7a**, as horas de operação aparecem no display inferior e um ponto pisca no display superior (LED de confirmação).

Para visualizar as horas de operação com CARGA, apertar **Ref. 3 Fig. 7a** novamente e um ponto acende no lado direito do display superior (LED de confirmação).

4.3.4 Visualização das horas de operação de componentes sujeitos à manutenção

Para visualizar as horas de operação dos componentes individuais sujeitos à manutenção, proceder de acordo com o **Capítulo 4.3.5**, até o ponto 4); as horas de operação serão visualizadas no display inferior.

- Apertar o botão **Ref. 3 Fig 7a** para sair.

4.3.5 Rearme dos contadores de intervalos de manutenção (LEDs AMARELOS exceto o LED "A")

Para rearmar um contador (como por exemplo, filtro de ar Ref. L) e depois de ter executado a manutenção correspondente, proceder da seguinte maneira: (veja Fig. 7a).

- 1) Apertar botões **Ref. 7** e **Ref. 4** simultaneamente até o LED **ref. H** acender.
- 2) Soltar os botões Ref. 7 e Ref. 4
- 3) Usar os botões **Ref. 1** e **Ref. 2** para selecionar o LED **Ref. L** (filtro de ar) correspondente ao componente em questão.
- 4) As horas de operação do componente **Ref.** L (filtro de ar) são visualizadas no display inferior de 5 dígitos.
- 5) Apertar o botão **Ref. 4** uma vez e o valor visualizado pisca, apertar o **botão Ref. 4** novamente; o display é agora rearmado e o LED **Ref. L** é aceso.
- 6) Apertar o botão **Ref. 3** para sair do RESET.
- 7) Para rearmar outro componente, ir até o LED correspondente usando os botões Ref. 1 e Ref. 2.

NOTA: O módulo sai automaticamente da programação após 30 segundos de inatividade.

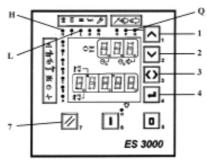


Fig. 7a

4.3.6 Ativação/ desativação do modo de operação em alívio

- Apertar o botão Ref. 1 Fig. 7a e o LED Ref. Q pisca, a máquina opera no modo ALÍVIO MANUAL.
- Apertar o botão Ref. 1 Fig. 7a novamente e a máquina retorna ao ciclo automático.

4.3.7 Parâmetros de operação do módulo

O módulo é programado na fábrica com um valor préestabelecido dos seguintes parâmetros:

P0 = pressão de parada (8 - 10 - 13 bar)

P1 = pressão de partida (6,5-8,5-11,5 bar)

r2 = temperatura máxima de operação (100 °C)

 $t3 = n\tilde{a}o ativado$

t4 = não ativado

C5 = número máximo de partidas por hora (10)

O módulo também está programado para medir a pressão em "bar" (parâmetro C7) e a temperatura em °C (parâmetro C6). As unidades de medição de pressão e temperatura correspondem à tabela abaixo.

Nome do parâmetro	Valor do parâmetro		
C6	0 = °C	1 = °F	
C7	0 = bar	1 = °PSI	

Todos os parâmetros acima descritos podem ser visualizados e modificados com o procedimento indicado no parágrafo 4.4.9. O número do parâmetro aparece no display superior e o valor do parâmetro aparece no display inferior.

4.3.8 Visualização e modificação do valor dos parâmetros do módulo

Para visualizar os parâmetros do módulo, proceder da seguinte maneira:

- Apertar e manter apertado o botão 4 **Fig. 7a** durante alguns segundos, até que "**P0**" (pressão de corte) apareça no display superior: o valor da pressão de corte em bar (8, 10 ou 13 bar) aparece simultaneamente no display inferior.
- Apertando o botão **Ref. 1 Fig. 7a** todos os parâmetros do módulo (**P0, P1, r2, t3, t4, C5, C6, C**7) irão aparecer na sequência no display superior, enquanto os valores ajustados para cada parâmetro irão aparecer no display inferior. Para sair, apertar o botão Ref. 3 até que o ponto luminoso no display esteja posicionado no símbolo.

Para modificar o valor dos parâmetros, seguir o exemplo indicado abaixo:

Exemplo: o valor máximo de temperatura deve ser modificado a 95°C.

- Apertar e manter apertado o botão Ref. 4 fig. 7a durante alguns segundos, até o parâmetro "P0" aparecer no display superior.
- Apertar o botão **Ref. 1 Fig. 7a** até atingir o parâmetro "r2" (temperatura máxima).
- Apertar o botão **Ref. 4 Fig. 7a**: o valor da temperatura indicada no display inferior pisca.
- Apertar o botão **Ref. 2 Fig. 7a** até atingir o valor 95.
- Apertar o botão Ref. 4 Fig. 7a para confirmar a modificação;
 o valor 95 pára de piscar.
- Sair da programação apertando o botão **Ref. 3 Fig. 7a**.

O novo valor da temperatura máxima é agora 95 °C.

4.3.9 Visualização do valor de temperatura excessivamente baixa

O módulo é programado de fábrica com um valor de temperatura mínima predefinida a (+4 °C), se o valor da leitura for inferior, a tela o indica com intermitência no display inferior. Esta advertência de anomalia não impede a partida do compressor, mas indica ao operador que o valor da temperatura ambiente é muito baixo.

4.4 Indicador do sentido de rotação - Controlador de fase

4.4.1 Descrição

O controlador de fase permite, mediante a um LED, uma leitura permanente e mais fácil do sentido de rotação do motor principal da máquina. Esta opção evita qualquer risco de dano do material, impedindo a partida do compressor em caso de ausência ou inversão de fase provocando uma falha na máquina.

4.5 Óleos especiais

4.5.1 Descrição

Diferentes óleos permitem satisfazer necessidades específicas.

Food Grade Oil : utilização do compressor na indústria agro alimentícia.

Nota: se esta opção é escolhida em uma máquina que tenha previamente funcionado com óleo padrão, necessita o cumprimento de um procedimento de lavagem específico.

4.5.2 Descrição da opção

Food Grade Oil

Este óleo está especialmente formulado para uma utilização como lubrificante com capacidade para entrar em contato com produtos alimentícios.

5. Informações específicas para CPVS

Consultar também os capítulos referentes à máquina padrão.

As máquinas **CPVS** cumprem as normas de compatibilidade eletromagnética em ambiente industrial 50081-2 e 50082-2.

5.1 Descrição (conf. Cap. 1)

Equipamento padrão

Um dispositivo de ajuste eletrônico de frequência substitui a chave de partida estrela-triângulo.

Uma chave seccionadora porta fusíveis integrada completa o dispositivo de segurança do CPVS padrão.

Uma espuma protetora para proteger o conversor de frequência contra contaminação de poeira.

5.2 Segurança

Para sua segurança, recomendamos que respeite as instruções com símbolos de advertência que se apresentam a seguir:

NORMAS DE SEGURANÇA

- É necessário recordar que em conformidade com as normas de segurança:
- · Deve existir uma tomada de terra,
- Deve existir uma chave seccionadora manual que corte as três fases e que deve ser colocado visivelmente perto do CPVS.
- Deve-se cortar a energia elétrica em caso de intervenção (exceto na drenagem por pressão).

= Tensão perigosa

= Perigo

A INSTALAÇÃO ELÉTRICA DEVE SER EXECUTADA UNICAMENTE POR UM TÉCNICO ESPECIALIZADO OUCOMPETENTE.

5.2.1 Advertência

Os componentes internos e as placas (exceto os terminais I/O isolados eletricamente) possuem carga de energia elétrica quando o inversor está conectado. Esta tensão é extremamente perigosa e pode causar ferimento ou mesmo a morte em caso de contato involuntário.

- Quando o inversor está conectado aos terminais de conexão U, V, W do motor, assim como os conectores +/dos resistores de travagem, permanecem com tensão se o motor for desligado.
- 3 Os terminais de controle I/O estão isolados e o inversor está desconectado, as saídas do relé podem estar com tensão. O mesmo aplica-se aos outros terminais de controle I/O mesmo que o interruptor X4 está na posição Desligado.
- 4 O inversor possui um circuito de carga de capacitores térmicos limitados. Consequentemente, é necessário esperar um mínimo de 5 minutos entre dois sucessivos tensionamentos. Se esta instrução não for respeitada podem ser causados sérios danos ao contator e a resistência do circuito de carga.

5.2.1 Instruções de segurança

- 1 Não se deve realizar nenhuma conexão quando o inversor está ligado.
- 2 Não se deve realizar nenhuma medição no inversor quando o mesmo está ligado.
- 3 Para realizar qualquer tipo de trabalho no inversor é necessário desconectar o equipamento, esperar que o sistema de ventilação interna pare e que os indicadores se apaguem. Esperar 5 minutos antes de abrir a tampa.
- 4 Não deve ser realizado nenhum teste de verificação da tensão ou isolamento dos componentes do inversor.
- 5 Desconectar os cabos do motor e do inversor antes de realizar medições.
- 6 Não tocar nos circuitos integrados. As descargas eletrostáticas podem danificá-los.
- 7 Antes de conectar o inversor assegure-se de que a tampa está bem fechada.
- 8 Verificar que nenhum condensador de compensação do coseno phi está conectado ao cabo do motor.

5.3 Instalação

O CPVS deve ser instalado longe de um transformador ou autotrafo. (veja Capítulo 2 e 3).

ATENÇÃO

Os motores e os inversores somente podem ser garantidos se a variação de tensão de alimentação não ultrapassar em 10% da tensão nominal. A conexão da alimentação na chave seccionadora (assim presente) necessita do uso de terminais corretamente isolados.

Os fusíveis para o interruptor seccionador são definidos como se segue:

Cabos , fusiveis e ajustes recomendados p/ compressores CPB20/40VSD, temp. amb. 40°C					
COMPR.	ALIMENTAÇÃO	fus. recom.	Fuse I ² t [A ² s]	cabos recom.	
CPB-20VSD	220V-60 Hz	3x80 A	2750	3x35 + 25 mm2	
CPB-20VSD	380V-60Hz	3x50 A	2100	3x16 + 16 mm2	
CPB-20VSD	440V-60Hz	3x50 A	1250	3x10 + 10 mm2	
CPB-25VSD	220V-60 Hz	3x100A	3150	3x35 + 25 mm2	
CPB-25VSD	380V-60 Hz	3x63 A	2100	3x25 + 16 mm2	
CPB-25VSD	440V-60Hz	3x50 A	2100	3x16 + 16 mm2	
CPB-30VSD	220V-60 Hz	3x125A	3150	3x50 + 25 mm2	
CPB-30VSD	380V-60 Hz	3x63 A	2100	3x25 + 16 mm2	
CPB-30VSD	440V-60Hz	3x63 A	2100	3x16 + 16 mm2	
CPB-40VSD	220V-60 Hz	não aplicavel	não aplicavel	não aplicavel	
CPB-40VSD	380V-60 Hz	3x100A	3150	3x35 + 25 mm2	
CPB-40VSD	440V-60Hz	3x80 A	2100	3x25 + 16 mm2	

5.4 Operação

5.4.1 Preparação para a partida (veja Capítulo 3).

ATENÇÃO

O circuito de potência deve ser desligado antes de efetuar ajustes no equipamento elétrico, para evitar qualquer partida acidental.

Antes da partida, verificar os seguintes pontos:

- 1 Assegure-se que a unidade tenha uma conexão terra apropriada,
- 2 Verificar o nível do óleo no compressor.

NOTA: o reservatório foi abastecido na fábrica com óleo apropriado. Veja **Capítulo** 6-6.1 para conhecer o tipo de óleo que deve ser usado e as condições de troca de óleo.

- 3 Verificar se a válvula de dreno do óleo está corretamente fechada.
- 4 Certificar de que os amortecedores de transporte (compressor) foram retirados do compressor.

ATENCÃO

O tampão de abastecimento de óleo, a válvula e os tampões de dreno devem estar sempre fechados durante o funcionamento e nunca devem ser abertos antes que o sistema atinja a pressão atmosférica.

ADAPTAÇÃO DO FILTRO RFI INTEGRADO DO INVERSOR PARA SUA REDE DE ALIMENTAÇÃO ELÉTRICA

(Para as redes NT e TT, o inversor deve ser mantido na sua configuração de fábrica).

NOTA: Não tente mudar o nível EMC novamente para a classe H (TN e TT). Mesmo que se inverta o procedimento mencionado, o conversor de frequência já não cumprirá as exigências de com os requisitos EMC da classe H.

5.4.2 Controle dos sentidos de rotação durante a partida

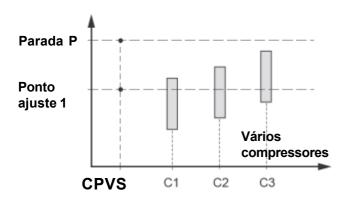
Este controle deve ser executado quando a máquina é operada pela primeira vez. Após qualquer trabalho no motor ou qualquer troca de fornecimento elétrico.

IMPORTANTE:

- Verificar o sentido de rotação (segundo a seta que está mostrada na fig. 3 pág. 10) pressionando o botão "Partida". Se o sentido não for o correto, inverta 2 fases do cabo do motor sob o variador. Para um sentido de rotação correto, o nível do óleo (fig. 10) deve baixar depois de 4 ou 5 segundos de funcionamento.
- Verificar também o sentido de rotação do ventilador (sentido anti-horário se olhado do interior da carenagem).
- 1. Pressionar o botão "Partida" para funcionar o motor.
- Funcionar alguns segundos com a válvula de descarga ligeiramente aberta para observar o compressor em carga. Verificar se não há vazamentos. Apertar novamente as uniões se necessário.
- 3. Pressionar o botão "Parada". O motor para e a unidade retorna automaticamente para a pressão atmosférica.

5.4.3 Ajuste da pressão – máquina

A unidade é pré-ajustada de fábrica para uma pressão de saída determinada. Para economizar energia, é aconselhável não ultrapassar o nível de pressão exigido, ajustando o parâmetro "Set point 1".


A pressão de parada deve ser ajustada "Parada indireta" (utilizada para consumos de fluxo inferior ao fluxo mínimo) a 0.5 bar acima do parâmetro "Set point 1". Desta maneira a corrente usada pelo compressor é minimizada (**veja ES 3000 Cap. 4–4.3**).

Não ajustar a pressão de parada da máquina a uma pressão superior a máxima da máquina.

5.4.4 Montagem e ajuste para o funcionamento em paralelo com outros compressores

Ajustar o **CPVS** a uma pressão de regulagem dentro dos intervalos de regulagem dos outros compressores.

Pressões de ajuste

5.4.5 Regulagem de pressão por variação de velocidade

Este modo de regulagem do compressor **CPVS** permite ajustar precisamente o fluxo do compressor ao ar comprimido de que

se necessita:

A precisão de regulagem da pressão é de 0,1 bar, quando a regulagem se faz por variação de velocidade, e para um fluxo entre o fluxo mínimo e máximo da máquina.

Princípio de regulagem de pressão por variação de velocidade

O regulador **ES 3000** controla o motor e o compressor em função da pressão da rede, medida por um sensor de pressão interna (**fig. 9a**).

- Se a pressão na rede é inferior ao ponto de ajuste da pressão (parâmetro introduzido pelo usuário no **ES 3000**), o motor acelera o que produz um aumento da pressão (**fig. 9b**).
- Se a pressão da rede é superior ao ponto de ajuste da pressão, o motor retarda, fazendo com que a pressão diminua.

O **ES 3000** fornece as funções de controle do compressor e dirige todo o conjunto do circuito de pressão. Integra desta forma um dispositivo para comparar a pressão indicada com aquela do sensor de pressão, associado a um dispositivo de compensação Proporcional Integral PI (**fig. 9c**).

O variador, que contém os últimos avanços em eletrônica de potência, é um dos mis compactos do mercado, graças às altas frequências do interruptor dos transistores IGBT.

Ao mesmo tempo, o método de controle do motor chamado de "controle vetorial do fluxo de controle aberto" assegura uma grande estabilidade do sistema perante as perturbações.

Desta forma o mecanismo de pressão é mais estável às bruscas variações de consumo (variações de fluxo).

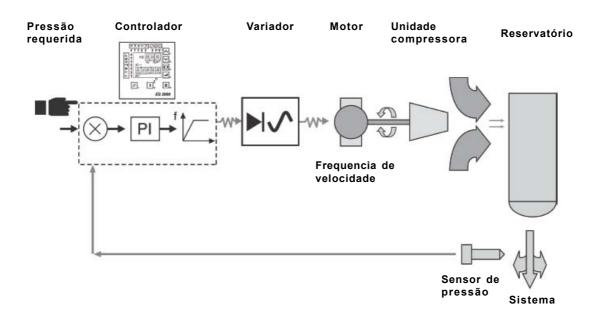


Fig. 9a Regulagem de pressão por variação de velocidade

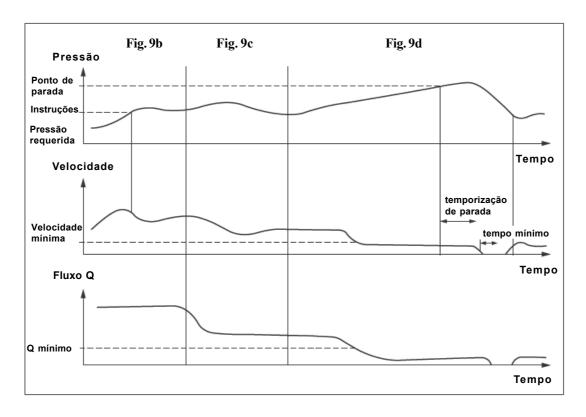
Regulagem da pressão para baixas taxas de fluxo

Para um fluxo de ar inferior ao fluxo mínimo da máquina, a pressão é regulada com o botão temporizador. Partida/Parada da máquina.

Devido a que o elemento da operação não pode funcionar abaixo de certa velocidade (correspondente ao fluxo mínimo), o compressor segue trabalhando e comprimindo a velocidade mínima, até que a pressão alcance o limite denominado de "Parada indireta".

Quando se alcança esse limite, o motor para, a máquina entra em "stand by". Após uma temporização de parada, efetua-se o alívio. A pressão baixa até o limite de pressão e quando o tempo mínimo tiver transcorrido (desde que alcançada a pressão de descarga), o variador permite que o motor parta. A pressão aumenta e o ciclo volta a iniciar (**fig. 9d**).

Para evitar o bombeamento do sistema – Parada/Partida frequente, o tempo de drenagem pode ser aumentado.


Economia de energia

Para uma demanda de ar comprimido dentro do intervalo do fluxo da máquina, fluxo mínimo até máximo, o variador de frequência alimenta o motor para fazer girar a uma velocidade suficiente que responda à solicitação de ar na pressão e em fluxo.

Isto permite ajustar a fonte de alimentação ao motor (e a máquina) à exigência de alimentação exata para a compressão do ar exata, sem a necessidade de uma fase de drenagem.

COMENTÁRIO:

A economia de energia aumenta se a manutenção da máquina é realizada de acordo com as instruções e frequência de manutenção.

5.5 Problemas de funcionamento

A equipe de funcionários responsável pela manutenção do compressor **CPVS** deve estar totalmente treinada para manter esta máquina, a fim de poder diagnosticar facilmente qualquer problema. Sob condições de operação normais, o compressor **CPVS** deve satisfazer totalmente.

5.5.1 Principais problemas

Os problemas mais prováveis, juntamente com os procedimentos a serem aplicados, são listados no manual do controlador. Para mais informações, (consulte o **Capítulo 4 – 4.3 do ES 3000**).

6. Manutenção

A tabela de manutenção abaixo se refere às condições de trabalho normais. Os parâmetros ambientais tais como temperatura particular, umidade, poeira, produtos químicos, etc. podem afetar de maneira significativa a vida do componente. Nestas condições particulares, a tabela de manutenção deve ser adaptada no campo.

As **peças originais** são projetadas para assegurar, manter e proteger a eficiência do compressor e proteger a máquina, garantindo um longo período de vida. A troca regular dos filtros de óleo, ar e separador por **peças originais** são a única maneira de assegurar uma melhor qualidade do ar e um menor custo operativo.

O óleo "Rotair" oferece o máximo rendimento e proteção graças a sua forte resistência à oxidação, a maior proteção contra oxidação, desgaste e uma ótima limpeza interna.

A manutenção periódica se limita a alguma operações obrigatórias. Recomenda-se fortemente desligar a energia elétrica ao efetuar qualquer regulagem ou reparo na máquina.

O sumário mostrado no painel de instrumentos permite rapidamente saber o tipo de periodicidade das operações a serem efetuadas para assegurar um funcionamento satisfatório do compressor.

	Operações necessárias							
Partes	sem an al- mente	A cada 500h	Todas as 2000 h (*) Serviço A	Todas as 4000 h ou 2 anos Serviço B	A cada 6000h	Todas as 8000 h ou 3 anos Sreviço C	Observações	
Válvula de dreno	X						Drenar os condensados do circuito de óleo a frio (Capítulo 6 – 6.7)	
Nível de óleo	X						Verificar e completar se necessário (Capítulo 6 – 6.1)	
Filtro de ar			X				Substituir o filtro	
Reservatório de óleo, Troca de óleo			X				Trocar o óleo, abastecer com óleo recomendado (Capítulo 6 - 6.1)	
Válvula de admissão				Controlar, limpar, lubrificar		Kit de revisão	Renovar a carcaça. Utilizar o kit da válvula de admissão	
Tubo de retorno de óleo						Kits de revisão	Verificar a limpeza do tubo de retomo de óleo e o estado da junta (Capítulo 6 – 6.6)	
Separador de óleo				X			Trocar o elemento conforme a indicação do painel (Capítulo 6 – 6.5)	
Filtro de óleo			X				Trocar o filtro	
Resfriador de ar/óleo		X					Jogar um jato de ar os elementos de refrigeração. Limpar (Capítulo 6 – 6.4)	
Válvula de pressão mínima				Controlar, limpar, lubrificar		Kits de revisão	Trocar os acessórios fornecidos no kit de manutenção	
Cubículo Elétrico			X				Apertar as conexões dos cabos de alimentação	
Teste da temperatura de segurança			X				Verificar o funcionamento (Capítulo 6 – 6.8)	
Painéis filtrantes (espumas pretas)**				X			Trocar o painel	
Correias		X					Verificar a tensão	
Correias					X		Trocar as correias	

NOTA: os kits de manutenção estão disponíveis (ver Lista de peças sobressalentes)

NOTA:

Neste motor está instalada, no rolamento traseiro, uma escova de aterramento que não permite a circulação de corrente pelo mesmo, evitando sua danificação. Esta escova deve ser substituida no mínimo a cada 24.000 horas."

^(*) ou pelo menos a cada ano

^(**) quando disponível

Drenar o compressor quando morno. A fim de efetuar esta operação, parar, desconectar a energia elétrica e fechar a válvula de saída do compressor. Afrouxar o tampão de abastecimento uma volta para despressurizar o reservatório em caso de falha de um componente. Abrir a válvula de dreno e drene. Não se esquecer de fechar a válvula depois da drenagem.

Após uma intervenção de manutenção, deve-se reiniciar o contador que indica o número de horas restantes para a seguinte troca de óleo; ver a nota específica sobre o controlador eletrônico.

NÍVEL DE ÓLEO

Quando está parado, o nível MÁXIMO de óleo se situa em ¾ a partir da parte inferior do indicador; o nível MÍNIMO corresponde a parte visível mais baixa do indicador.

Tampão de abastecimento

Fig. 10 - Nível de óleo

O NÍVEL DE ÓLEO TEM QUE SER VERIFICADO APÓS A PARADA E QUANDO O COMPRESSOR ESTIVERAINDA MORNO (VÁLVULA TERMOSTÁTICA ABERTA)

NOTA

Se o óleo está em mal estado, isto é desprende um cheiro acre ou contém partículas de verniz ou outros sólidos, o sistema deve ser enxaguado. Derramar aproximadamente 50% do conteúdo normal de óleo limpo, colocar em funcionamento o grupo durante 3 horas e drenar com cuidado. Durante o enxágüe deixe o antigo elemento filtrante.

6.1 Filtro de ar (Fig. 11, Veja Capítulo 1 - 1.2)

O filtro de ar é do tipo seco encapsulado. Em condições padrões de uso, troque o elemento a cada 2.000 horas. Isso pode ser feito por um acesso fácil do painel frontal. Verificar a limpeza do filtro semanalmente e troque se necessário.

ATENÇÃO

Se não for substituir o elemento filtrante no momento necessário pode provocar uma obstrução definitiva. Isto reduz o fluxo de ar do compressor e se corre o perigo de danificar o separador de óleo e o compressor.

Fig. 11 - Filtro de ar

6.2 Ventilador

Recomenda-se trocar o ventilador completo se uma ou várias pás se encontrarem deformadas ou quebradas. Em caso de troca, verificar o sentido correto de rotação do ventilador. Uma inversão reduziria o resfriamento.

6.3 Resfriador de ar e óleo

O resfriador de alumínio de óleo e de ar é uma parte vital do sistema do **CPB**. Tomar cuidado com este elemento. Para evitar deformar ou destruir os ninhos dos tubos, ao montar ou desmontar as uniões e das mangueiras dos radiadores, efetuar mantendo em rotação com uma chave. A superfície externa dos ninhos dos tubos deve sempre estar limpa a fim de permitir a transferência térmica apropriada. No caso de um vazamento, detectar a origem, para isso:

- parar o CPB
- limpar as áreas gordurosas
- localizar os vazamentos por meios convencionais (solução de sabão,...).

6.4 Elemento separador de óleo (Fig. 12) (Veja Capítulo 1 – 1.2)

O período de vida do elemento separador de óleo depende da pureza do ar aspirado, as trocas regulares do filtro de óleo, a qualidade do óleo usado, o cuidado durante a drenagem da condensação no reservatório de óleo e na temperatura ambiente.

O elemento separador de óleo (ref. 1 Fig. 12) deve ser substituído quando se visualizar a advertência correspondente no controlador.

Após trocar o elemento separador de óleo, reiniciar o controlador para lhe permitir saber quanto tempo terá antes que necessite ser trocado.

Consumo excessivo de óleo

Uma quantidade excessiva de óleo no ar descarregado e uma

queda repentina do nível são sinais de uma possível deterioração do elemento separador de óleo e de que este deve ser trocado. Em primeiro lugar verificar o compressor assegurando-se que não há vazamento de óleo e de que a tubulação de aspiração funcione corretamente. Para tocar o elemento separador de óleo, retirar o painel superior direito.

Elemento separador

Fig. 12 - Elemento separador de óleo

6.5 Tubo de retorno de óleo (Veja Fig. 13)

Situado abaixo do compressor:

- · Desmontar toda a válvula de retenção de retorno de óleo.
- · Levantar o tubo de retenção de óleo.
- · Verificar o estado do anel "O" (ref. 1 Fig. 13)
- · Montar novamente
- · Um kit dedicado permite trocar toda a válvula de retenção.

6.6 Dreno de condensados (Veja Capítulo 1 – 1.2)

Os condensados impedem uma lubrificação correta. O desgaste substancial resulta a uma redução na vida do **CPB**. Por isso é essencial drenar os condensados.

Drenagem dos condensados no circuito de óleo:

A drenagem somente ocorrerá após pelo menos 12 horas depois de que o **CPB** pare. Pode ser realizada, por exemplo, na partida.

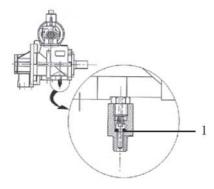


Fig. 13 - Tubulação de retorno de óleo

Para fazer isto:

- Abrir lentamente a válvula de troca de óleo e deixe a água sair.
- Quando o óleo aparecer, fechar imediatamente a válvula

- para evitar toda a perda do óleo.
- Abastecer com óleo caso necessário.Eventualmente, fazer a drenagem total do óleo.

6.7 Teste de segurança de temperatura

SE OSENSOR NÃO INDICARATEMPERATURACORRETA OU RETORNAR UMA MENSAGEM DE ERRO NO VISOR DO CONTROLADOR, PRIMEIRO VERIFICAR AS CONEXÕES E OS CABOS. SOMENTE SE PODE TROCAR SE FOR DETECTADO DEFEITUOSO COM CERTEZA.

6.8 Aperto das conexões elétricas

Um afrouxamento nos cabos de energia elétrica provoca um aquecimento que pode inclusive destruir certas partes elétricas.

DEVE-SE REALIZAR UM APERTO PERIÓDICO NA ENTRADA E NA SAÍDA DOS CONTATORES DE LINHA, ESTRELA E TRIÂNGULO. (VEJA TABELA DE MANUTENÇÃO).

Antes de abrir o cubículo elétrico, eliminar sempre a alimentação elétrica da máquina.

6.9 Desarmando o compressor ao final de sua vida útil

- 1. Parar o compressor e fechar a válvula de saída de ar.
- 2. Desconectar o compressor da alimentação elétrica.
- 3. Descomprimir o compressor: desconectar uma tubulação 4/6 na tampa do separador de óleo.
- 4. Fechar e descomprimir a seção da rede de ar que está conectada à válvula de saída. Desconectar a tubulação da saída de ar comprimido da rede de ar.
- 5. Esvaziar os circuitos de óleo e dos condensados.
- 6. Desconectar o sistema de drenagem dos condensado da tubulação dos condensados do compressor.

Fig. 14

Fig. 15

6.10 Tensão da correia

Antes de fazer alguma manutenção, certifique-se de que o compressor está parado, a fonte de alimentação e a rede de ar comprimido estão isoladas e que a máquina está drenada totalmente.

- Retirar o painel traseiro (1) Fig. 14.
- Retirar a chapa de proteção (2) Fig. 15.
- Com uma chave Allen, desparafusar os quatro parafusos (3) **Fig. 16** do atuador de sustentação.
- Com uma chave sextavada de 19", desparafusar a contra porca como se mostra na **Fig. 17**.
- Apertar as correias com uma chave sextavada de 19", de acordo com a tabela 1. Se nenhum dispositivo para medir a tensão está disponível, utilizar o método indicado na **Fig. 1**.
- Apertar a porca e a contra porca com uma chave sextavada de 19".
- Travar a porca de aperto com uma chave Allen.
- Colocar a chapa de proteção.
- Colocar o painel traseiro.

6.11 Remoção da correia

- Retirar o painel traseiro (1).
- Retirar a chapa de proteção (2).
- Com uma chave Allen, desaperte os quatro parafusos (3) do atuador de sustentação.
- Com uma chave sextavada de 19", desparafusar a contra porca como se mostra na **Fig. 18**.
- Retirar o bocal de entrada **Fig. 19**.
- Trocaras correias desgastadas Fig. 20.
- Apertar as correias com uma chave sextavada de 19", de acordo com a tabela 1. Se nenhum dispositivo para medir a tensão está disponível, utilizar o método indicado na Fig. 17.
- Apertar a porca e a contra porca com uma chave sextavada de 19".

- Travar a contra porca com uma chave Allen.
- Colocar a chapa de proteção.
- Colocar o painel traseiro.

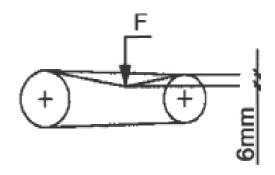



Fig. 16

Nova Correia: F = 4 kgApós 100h: F = 2.5 kg

Fig. 17

Fig. 18

Fig. 19

Fig. 20

7. Incidentes durante a operação

A equipe de funcionários responsáveis pela manutenção do **CPB** deve tornar-se inteiramente familiar com a máquina, a fim de poder facilmente diagnosticar qualquer anomalia. Em condições normais de funcionamento o **CPB** deve fornecer satisfação.

7.1 Incidentes principais

Os principais incidentes que podem ocorrer se encontram listados abaixo, junto com as soluções correspondentes. As identificações dos indicadores luminosos relacionam-se ao painel de controle.

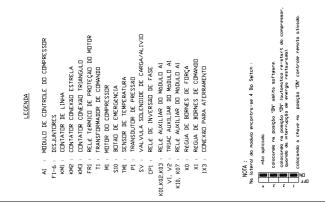
DEFEITO ENCONTRADO	CAUSAS POSSÍVEIS	OBSERVAÇÕES
1. A máquina não dá partida	a) Interruptor principal aberto.	a) Fechar o interruptor
	b) Falta uma fase.	b)Verificar os circuitos
	c) Fusível.	c) Substituir.
	d)Tensão insuficiente nos bornes do motor	d) Verificar a tensão nas conexões.
	e) Compressor com baixa pressão.	e) Verificar o dispositivo de alívio e trocar se
		necessário. Verificar a estanqueidade da válvula
		de pressão mínima.
	f) Baixa temperatura.	f) Temperatura mantida ? 2°C
2) O compressor superaquece.	a) Temperatura ambiente elevada	a) Faça aberturas ou instale dutos para liberar o
		ar quente (Veja Cap. 2).
	b) Obstrução da passagem do ar de	b) Limpar o radiador (Veja Cap. 5 – 5.4).
	refrigeração através do radiador de óleo.	
	c) Nível de óleo muito baixo.	c)Verificar e completar o nível.
	d) Circuito de óleo obstruído.	d) Verificar a limpeza do filtro de óleo. Drenar.
		Trocar o elemento filtrante.
3) O compressor para pelo disparo da	a) Sobrecarga do motor do compressor.	a) Verificar o aperto das conexões elétricas.
proteção do motor.		Verificar a pressão do ar comprimido e a
	h) Deseguilibrie de fose	configuração da pressão. b) Verificar a intensidade das fases.
4) Abertura da válvula de segurança	b) Desequilíbrio da fase.a) Elemento separador de óleo obstruído.	a) Trocar o elemento separador de óleo.
4) Abertura da varvura de segurança	b) A válvula da caixa de aspiração está fora	b) Verificar a válvula, o pistão e as juntas da
	de uso ou não se fecha.	caixa de aspiração.
	c) Pressostato, sensor ou válvula solenóide	
	defeituosa.	c) Verificar se o pressostato, o sensor e a válvula
		solenóide estão em bom funcionamento.
5) Consumo excessivo de óleo.	a) Retorno de óleo obstruído.	a)Verificar o condutor de retorno de óleo.
	b) Vazamentos de óleo no CPB.	b) Localizar os vazamentos de óleo e repará-los.
	a) Elemente congredor de álea defeituese	a) Substituir a alamenta caparador de álea (Vois
	c) Elemento separador de óleo defeituoso.	c) Substituir o elemento separador de óleo (Veja Capítulo 5 – 5.5)
6) Pressão de entrega muito baixa.	a) Ajuste incorreto da pressão.	a) Ajustar a pressão (Veja Capítulo 3).
of Fressus de chirega mano suma.	b) O fluxo solicitado é superior ao do	
	compressor.	b) Verificar o consumo e eventuais vazamentos.
	c) Válvula de admissão fechada.	c) Verificar a válvula solenóide, a válvula de
		ajuste da pressão.
	d) Regulador de pressão mal	d) Verificar a regulagem.
	ajustado(opcional controle modulado).	
7) Fluxo de ar comprimido Baixo	a) Filtro de ar obstruído.	a) Limpar o filtro.
	b) A válvula solenóide não funciona.	b) Verificar a regulagem.
8) Ruído excessivo da unidade.	a) Parafusos de fixação do compressor ou do	a) Voltar a apertar.
	motor frouxos.	
	b) Painéis acústicos mal fechados.	b) Verificar.
	c) As correias patinam.	c) Voltar a tencionar.
	d) Calços de transporte (vermelhos) não	d) Desmontar os calços.
0.0	retirados.	
		a) Adicionar um kit de supressão de interferência
inexistentes.	eletrônico do ES 3000.	(Consultar Chicago Pneumatic)

8. Características técnicas

8.1 Condições de referência

		CPB	CPVS
Pressão de entrada de ar (absoluta)	bar	1	1
Temperatura de entrada de ar	$^{\circ}$ C	20	20
Umidade relativa	%	0	0
Pressão de trabalho		Consultar a seção	Consultar a seção
		Dados do compressor	Dados do compressor
Velocidade do eixo do motor	r/min	3550	3360
Ajuste da válvula termostática	$^{\circ}$ C	55	70

8.2 Limitações


		CPB	CPVS
Pressão de trabalho máxima		Consultar a seção Dados do compressor	Consultar a seção Dados do compressor
Pressão de trabalho mínima b	par(e)	4	5,5
Temperatura máxima da entrada de ar	°C	40	40
Temperatura mínima da entrada de ar	°C	0	0

8.2 Dados do compressor

MODELO	POTÊNCIA	PRESSÃO	CAPACIDADE	NÍVEL DE RUÍDO	CONEXÃO	1	DIMENSÕE	s	PESO	CARGA DE ÓLEO
	HP	bar	m³/h	dB(A)	BSP	L mm	W mm	Hmm	Kg	l
CPB 15	15	8	104	68 / 3	1 ^{1/4} "	1330	780	1220	395	~10
CPB 15	15	10	90	68 / 3	1 1/4"	1330	780	1220	395	~10
CPB 15	15	13	68	68 / 3	1 ^{1/4*}	1330	780	1220	395	~10
CPB 20	20	8	136	68 / 3	1 1/4"	1330	780	1220	405	~10
CPB 20	20	10	121	68 / 3	1 1/4"	1330	780	1220	405	~10
CPB 20	20	13	92	68 / 3	1 1/4"	1330	780	1220	405	~10
CPB 25	25	8	166	68 / 3	1 1/4"	1330	780	1220	414	~10
CPB 25	25	10	154	68 / 3	1 ^{1/4} "	1330	780	1220	414	~10
CPB 25	25	13	121	68 / 3	1 1/4"	1330	780	1220	414	~10
CPB 30	30	8	205	70 / 3	1 1/4"	1330	780	1220	430	~11
CPB 30	30	10	181	70 / 3	1 1/4"	1330	780	1220	430	~11
CPB 30	30	13	145	70 / 3	1 1/4"	1330	780	1220	430	~11
CPB 40	40	8	227	70 / 3	1 1/4"	1330	780	1220	458	~11
CPB 40	40	10	202	70 / 3	1 1/4"	1330	780	1220	458	~11
CPB 40	40	13	170	70 / 3	1 ^{1/4*}	1330	780	1220	458	~11
CPVS 20	20	5,5	156	68 / 3	1 1/4*	1330	780	1220	490	~10
CPVS 20	20	7,5	144	68 / 3	1 1/4"	1330	780	1220	490	~10
CPVS 20	20	9,5	129	68 / 3	1 1/4"	1330	780	1220	490	~10
CPVS 25	25	5,5	166	68 / 3	1 ^{1/4*}	1330	780	1220	452	~10
CPVS 25	25	7,5	195	68 / 3	1 1/4*	1330	780	1220	452	~10
CPVS 25	25	9,5	181	68 / 3	1 1/4*	1330	780	1220	452	~10
CPVS 30	30	5,5	220	70 / 3	1 1/4*	1330	780	1220	458	~11
CPVS 30	30	7,5	211	70 / 3	1 1/4*	1330	780	1220	458	~11
CPVS 30	30	9,5	191	70 / 3	1 1/4"	1330	780	1220	458	~11
CPVS 40	40	5,5	256	70 / 3	1 1/4*	1330	780	1220	504	~11
CPVS 40	40	7,5	238	70 / 3	1 1/4*	1330	780	1220	504	~11
CPVS 40	40	9,5	216	70 / 3	1 1/4*	1330	780	1220	504	~11

9. Diagrama elétrico

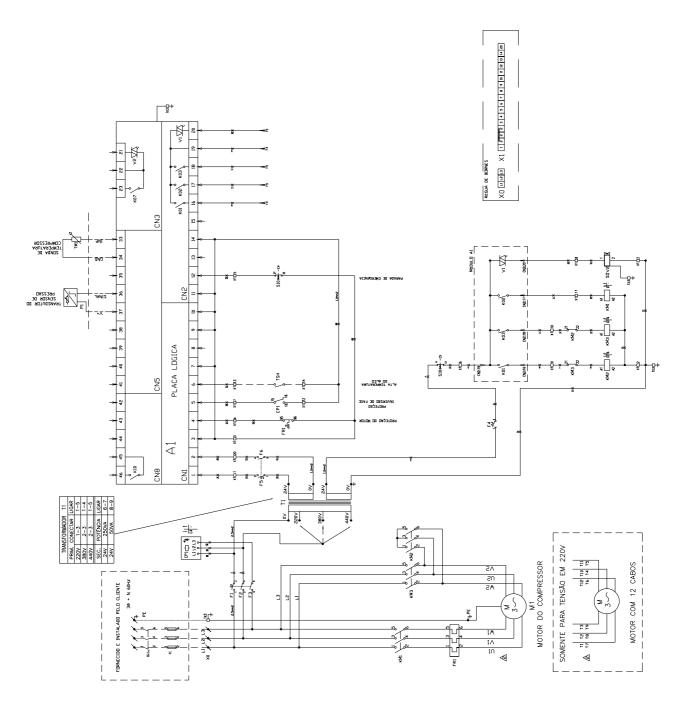
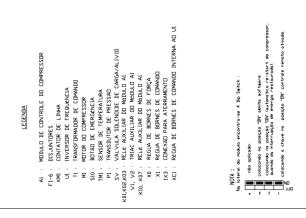



Diagrama elétrico CPB 15-20-25-30-40

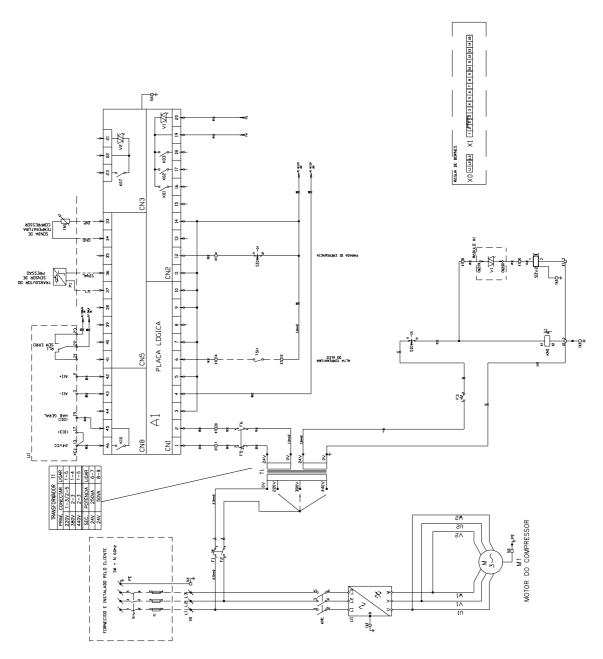


Diagrama elétrico CPVS 20-25-30-40

Chicago Pneumatic Brasil LTDA.

Rua São Paulo, 147 - Alphaville Empresarial - Barueri - São Paulo - Brasil

Fone: (011) 2189-3900